Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles.
نویسندگان
چکیده
Nanometer-sized colloidal particles (nanoparticles) have been extensively used in biomedical applications as a result of their many useful electronic, optical, and magnetic properties that are derived from their nanometer size and composition. Semiconductor nanoparticles (also known as quantum dots) have been applied as fluorescent probes for cell labeling in optical imaging, and gold nanoparticles derivatized with oligonucleotides have been used for sensing complementary DNA strands. Magnetic nanoparticles have been applied to contrast-enhancement agents for magnetic resonance imaging (MRI), magnetic carriers for drug-delivery systems, biosensors, and bioseparation. MRI is one of the most powerful imaging techniques for living organisms as it provides images with excellent anatomical details based on soft-tissue contrast and functional information in a non-invasive and real-time monitoring manner. MRI has further advanced by the development of contrast agents that enable more specific and clearer images and enlargements of detectable organs and systems, leading to a wide scope of applications of MRI not only for diagnostic radiology but also for therapeutic medicine. Current MRI contrast agents are in the form of either paramagnetic complexes or magnetic nanoparticles. Paramagnetic complexes, which are usually gadolinium (Gd) or manganese (Mn) chelates, accelerate longitudinal (T1) relaxation of water protons and exert bright contrast in regions where the complexes localize. For instance, gadolinium diethylenetriaminepentaacetate (Gd-DTPA) has been the most widely used of such complexes and its main clinical applications are focused on detecting the breakage of the blood-brain barrier (BBB) and changes in vascularity, flow dynamics, and perfusion. Manganese-enhanced MRI (MEMRI), which uses manganese ion (Mn) as a T1 contrast agent, is applicable to animals only owing to the toxicity of Mn when it accumulates excessively in tissues and despite the increasing appreciation of this technique in neuroscience research. The recent development of molecular and cellular imaging to help visualize disease-specific biomarkers at the molecular and cellular levels has led to an increased interest in magnetic nanoparticles as MRI contrast agents. In particular, superparamagnetic iron oxide (SPIO) has emerged as the prevailing agent so far. 10] However, the negative contrast effect and magnetic susceptibility artifacts of iron oxide nanoparticles are significant drawbacks of using SPIO in MRI. The resulting dark signal can mislead the clinical diagnosis in T2-weighted MRI because the signal is often confused with the signals from bleeding, calcification, or metal deposits, and the susceptibility artifacts distort the background image. For the extensive applications of MRI to diagnostic radiology and therapeutic medicine and to overcome the [*] Prof. J. H. Lee, Prof. S. T. Kim, Prof. S.-H. Kim Department of Radiology, Samsung Medical Center Sungkyunkwan University School of Medicine Seoul 135-710 (Korea) Fax: (+82)2-3410-0084 E-mail: [email protected]
منابع مشابه
A New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite
Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...
متن کاملThe Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent
Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...
متن کاملThe Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent
Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...
متن کاملMultifunctional MIL-S─CUR@FC nanoparticles: a targeted theranostic agent for magnetic resonance imaging and tumor targeted delivery of curcumin
Introduction: Noninvasive magnetic resonance imaging (MRI) and targeted drug delivery systems, usually referred to as theranostic agents, are being developed to enable detection, site-specific treatment, and long-term monitoring. Materials and Methods: To elucidate the effects of coating on cellular uptake and biodistribution of n...
متن کاملA New Theranostic System Based on Gd2O3 NPs coated Polycyclodextrin Functionalized Glucose for Molecular Magnetic Resonance Imaging (MMRI).
Introduction: Recent advances in nanoscience and biomedicine have attracted tremendous attention over the past decade to design and construct multifunctional nanoparticles that combine targeting, therapeutic, and diagnostic functions with a single platform to overcome the problems of conventional techniques for diagnosis and therapy with minimal toxicity. Materials ...
متن کاملANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST
Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Angewandte Chemie
دوره 46 28 شماره
صفحات -
تاریخ انتشار 2007